

Protopanaxatriol-Type Ginsenosides from the Root of *Panax ginseng*

Guo-Yuan Zhu, Ying-Wei Li, Desmond Kwok-Po Hau, Zhi-Hong Jiang, Zhi-Ling Yu, and Wang-Fun Fong*

Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region (SAR), China

Ginseng, the root of *Panax ginseng* C. A. Meyer (Araliaceae), is one of the most important traditional medicines and functional foods. A detailed phytochemical investigation on the roots of *P. ginseng* led to the isolation of 6 new natural protopanaxatriol (PPT)-type ginsenosides, ginsenosides Re₁-Re₆ (compounds 1-6), along with 10 known PPT-type ginsenosides. Their structures were elucidated on the basis of chemical and spectroscopic analyses, including high-resolution mass spectrometry (HRMS) and 1D and 2D nuclear magnetic resonance (NMR). The unusual α -D-glucopyranosyl-(1-3)- β -D-glucopyranosyl sugar chain, as found in compounds 1 and 2, is reported in the genus *Panax* for the first time.

KEYWORDS: Panax ginseng; Araliaceae; ginsenosides Re1-Re6; protopanaxatriol; ginsenoside

INTRODUCTION

Ginseng, the root of *Panax ginseng* (Araliaceae), is one of the most well-known traditional Chinese medicines and functional foods. Ginseng has attracted extensive interest because of its diverse pharmacological and therapeutic effects on the central nervous system, cardiovascular system, immune-modulating function, diabetes, inflammation, aging, and cancer (1-3). Earlier phytochemical investigations of *P. ginseng* have led to the isolation of many dammarane-type triterpene glycosides, known as ginsenosides, which can be classified into protopanaxadiol (PPD) or protopanaxatriol (PPT) types and are believed to be the primary biologically active constituents of ginseng (4-8). As part of continued chemical and biological activity studies of ginseng and ginsenosides (9-11), the dried root of P. ginseng was subjected to detailed phytochemical analysis and resulted in the isolation of 6 new (compounds 1-6) and 10 known PPT-type ginsenosides. We report herein the isolation and structural elucidation of these new PPT-type ginsenosides.

MATERIALS AND METHODS

General Experimental Procedures. Optical rotations were obtained on a Jasco P-1010 polarimeter (Na 589 nm); ultraviolet (UV) spectra were obtained on a Jasco V-530 spectrophotometer; and infrared (IR) spectra were obtained on a PerkinElmer Spectrum One Fourier transform infrared (FTIR) spectrometer (KBr). Nuclear magnetic resonance (NMR) spectroscopy was performed on a Bruker DMX-400 NMR spectrometer using standard Bruker pulse programs. Samples were dissolved in pyridine- d_5 , and the NMR spectra were recorded using the lowest field signals of pyridine- d_5 (¹H, δ 8.71; ¹³C, δ 149.9) as an internal reference. Ultraperformance liquid chromatography–high-resolution electrospray ionization mass spectrometry (UPLC–HRESIMS) was performed on an Acquity ultra-performance LC-Bruker micrOTOF mass spectrometer system, and ESIMS was run on a Thermo Finnigan LCQ Advantage mass spectrometer. Thin-layer chromatography (TLC) was performed on plates precoated with silica gel 60 F₂₅₄ (Merck) and reversed-phase RP18 F₂₅₄ (Merck), and spots were visualized by spraying the plates with 10% H₂SO₄ ethanol solution, followed by heating. Semi-preparative high-performance liquid chromatography (HPLC) was carried out on a Perkin-Elmer series 200 separation system with an autosampler, an IC pump, a 253C diode array detector (DAD), and a YMC-Pack ODS-A semi-preparative column (10 μ m, 250 × 10 mm), at an elution flow rate of 5.0 mL/min. Column chromatography (CC) was performed with silica gel (200–300 mesh, Qingdao Haiyang Chemical Group Co., Qingdao, Shandong Province, People's Republic of China) and reversed-phase RP18 (45 μ m, Merck).

Chemicals. HPLC-grade MeOH and MeCN, AR-grade EtOAc, EtOH, *n*-BuOH, MeOH, CHCl₃, HCl, and pyridine were purchased from Labscan Asia (Bangkok, Thailand). L-Cysteine methyl ester hydrochloride, phenyl isothiocyanate, formic acid, L-glucose, D-arabinose, L-arabinose, and MeONa were obtained from Sigma Aldrich (St. Louis, MO). D-Glucose was purchased from Alfa Aesar (Lancashire, U.K.).

Plant Material. The root of *P. ginseng* C. A. Meyer was collected from Jilin Province, People's Republic of China, in October 2007. The species was identified by Professor Zhong-Zhen Zhao of the School of Chinese Medicine, Hong Kong Baptist University. A voucher specimen (PG-0710) was deposited at the Research and Development Division, School of Chinese Medicine, Hong Kong Baptist University.

Extraction and Isolation. Air-dried, milled root powder of *P. ginseng* C. A. Meyer (7.0 kg) was extracted with 70% EtOH (21 L × 3) under reflux, and the extracts were combined and evaporated to afford a brown residue (~1.8 kg). The residue was dissolved in water (7 L) and partitioned successively with petroleum ether (7 L × 3), EtOAc (7 L × 3), and *n*-BuOH (7 L × 3) to give the petroleum-ether-soluble (110 g), EtOAc-soluble (120 g), and *n*-BuOH-soluble (185 g) fractions. The *n*-BuOH extract (180 g) was subjected to CC eluted with a CHCl₃/MeOH gradient (10:1 \rightarrow 3:7). Fractions were combined according to their TLC behavior to obtain nine fractions (A \rightarrow I). Fraction A (3 g) was repeatedly chromato-graphed on a silica gel column eluted with EtOAc/MeOH/H₂O (50:5:1)

^{*}To whom correspondence should be addressed. Telephone: +852-3411 2928. Fax: +852-3411 2902. E-mail: wffong@hkbu.edu.hk.

and a reversed-phase RP18 column eluted with MeCN/H₂O (20:80 \rightarrow 35:65) and purified by HPLC eluted with MeCN/H₂O (30:70) to yield compound 6 (4 mg), yesanchinoside D (8 mg), and koryoginsenoside R_1 (23 mg). Fraction B (15 g) was subjected to CC on a silica gel column eluted with EtOAc/MeOH/H₂O (50:5:1) and a reversed-phase RP18 column eluted with MeCN/H₂O (20:80 \rightarrow 35:65) and finally isolated on HPLC eluted with MeCN/H₂O (20:80 \rightarrow 35:65) to afford ginsenoside Rg₁ (220 mg), ginsenoside Rg_2 (72 mg), and notoginsenoside R_2 (180 mg). Fraction C (13 g) was rechromatographed on a silica gel column eluted with EtOAc/MeOH/H₂O (50:6:1) and a RP18 column eluted with MeCN/ H₂O (25:75) to give ginsenoside Rf (150 mg). Fraction D (17 g) was submitted to CC on a normal-phase silica gel column eluted with EtOAc/ MeOH/H2O (50:8:1) and a reversed-phase RP18 column eluted with MeCN/H₂O (20:80 \rightarrow 40:60) and finally purified by HPLC eluted with a gradient of MeCN/H₂O (18:82 \rightarrow 20:80) to obtain compound 1 (18 mg), compound 2 (65 mg), compound 3 (30 mg), compound 4 (10 mg), compound 5 (8 mg), ginsenoside Re (300 mg), 20-glucoginsenoside Rf (150 mg), notoginsenoside R_1 (11 mg), and notoginsenoside N (22 mg).

Ginsenoside Re₁ (**Compound 1**). White amorphous powder. $[\alpha]_{25}^{25}$ +74.7 (*c* 0.9, MeOH). IR (KBr) ν_{max} (cm⁻¹): 3400, 2931, 2878, 1642, 1550, 1455, 1385, 1307, 1258, 1202, 1147, 1076, 1031, 925, 891, 842, 771, 619, 534. ¹H and ¹³C NMR spectra data: see **Tables 1** and **2**. HRESIMS (*m*/*z*): [M – H]⁻ 961.5349 (calcd for C₄₈H₈₁O₁₉, 961.5378), [M + HCOO]⁻ 1007.5414 (calcd for C₄₉H₈₃O₂₁, 1007.5432).

Ginsenoside Re₂ (Compound 2). White amorphous powder. $[\alpha]_{D}^{25}$ +66.1 (*c* 0.8, MeOH). IR (KBr) ν_{max} (cm⁻¹): 3400, 2931, 2879, 1642, 1455, 1386, 1310, 1259, 1202, 1147, 1076, 1039, 925, 891, 843, 771, 640, 616, 559. ¹H and ¹³C NMR spectra data: see **Tables 1** and **2**. HRESIMS (*m/z*): [M – H]⁻ 961.5346 (calcd for C₄₈H₈₁O₁₉, 961.5378), [M + HCOO]⁻ 1007.5390 (calcd for C₄₉H₈₃O₂₁, 1007.5432).

Ginsenoside Re₃ (Compound 3). White amorphous powder. $[\alpha]_{D}^{25}$ +63.6 (*c* 1.2, MeOH). IR (KBr) ν_{max} (cm⁻¹): 3400, 2931, 2879, 1642, 1551, 1456, 1385, 1307, 1259, 1201, 1147, 1075, 1028, 926, 891, 841, 780, 640, 616, 534. ¹H and ¹³C NMR spectra data: see **Tables 1** and **2**. HRESIMS (*m/z*): [M - H]⁻ 961.5340 (calcd for C₄₈H₈₁O₁₉, 961.5378).

Ginsenoside Re₄ (Compound 4). White amorphous powder. $[\alpha]_{D}^{25}$ -5.8 (*c* 0.2, MeOH). IR (KBr) ν_{max} (cm⁻¹): 3400, 2931, 2879, 1640, 1552, 1456, 1385, 1308, 1259, 1204, 1076, 1040, 891, 862, 841, 780, 646, 616, 534. ¹H and ¹³C NMR spectra data: see **Tables 1** and **2**. HRESIMS (*m/z*): [M – H]⁻ 931.5260 (calcd for C₄₇H₇₉O₁₈, 931.5272), [M + HCOO]⁻ 977.5292 (calcd for C₄₈H₈₁O₂₀, 977.5327).

Ginsenoside Re₅ (Compound 5). White amorphous powder. $[\alpha]_{D}^{25}$ +6.9 (*c* 0.3, MeOH). IR (KBr) ν_{max} (cm⁻¹): 3391, 2934, 2877, 1641, 1551, 1456, 1376, 1307, 1257, 1076, 1029, 891, 863, 825, 666, 619, 534. ¹H and ¹³C NMR spectra data: see **Tables 1** and **2**. HRESIMS (*m/z*): $[M - H]^-$ 815.4785 (calcd for C₄₂H₇₁O₁₅, 815.4798), $[M + \text{HCOO}]^-$ 861.4826 (calcd for C₄₃H₇₃O₁₇, 861.4853).

Ginsenoside Re₆ (Compound 6). White amorphous powder. $[\alpha]_{D}^{25}$ +40.4 (*c* 0.1, MeOH). UV (MeOH) λ_{max} , nm (log ε): 211 (3.89), 252 (3.02). IR (KBr) ν_{max} (cm⁻¹): 3400, 2934, 2879, 1715, 1656, 1445, 1385, 1313, 1191, 1076, 1031, 970, 926, 892, 838, 647, 618, 530. ¹H and ¹³C NMR spectra data: see **Tables 1** and **2**. HRESIMS (*m*/*z*): [M + HCOO]⁻ 913.5190 (calcd for C₄₇H₇₇O₁₇, 913.5166).

Determination of the Absolute Configuration of Sugars. The absolute configuration of sugars of new gisenosides was determined according to the reported protocol (12). Briefly, compounds 1-5 (1 mg each) were dissolved in 1 N HCl (0.1 mL) and then heated to 80 °C for 4 h. The solvent was removed under N2. The residue was dissolved in pyridine (0.1 mL) containing L-cysteine methyl ester hydrochloride (0.5 mg) and heated at 60 °C for 1 h. A 0.1 mL solution of phenyl isothiocyanate (0.5 mg/mL) in pyridine was added to the mixture, which was heated at 60 °C for a further 1 h. The reaction mixture $(2 \mu L)$ was directly analyzed by HPLC under the following conditions: Waters Symmetry C18 column (5 μ m, 4.6 \times 250 mm); DAD detection, 250 nm; column temperature, 35 °C; mobile phase, 25% MeCN in 0.1% H₃PO₄; and flow rate, 0.8 mL/min. From the acid hydrolysates of compounds 1-3 and 5, D-glucose was confirmed by a comparison of the retention time values (15.46, 15.45, 15.44, and 15.42 min, respectively) of their derivatives to those of derivatized authentic sugars. L-Arabinose ($t_{\rm R}$, 17.65 min) and D-glucose $(t_{\rm R}, 15.41 \text{ min})$ were confirmed from the acid hydrolysate of compound 4. Treated in the same way, standard D-glucose (Alfa Aesar), L-glucose (Sigma), D-arabinose (Sigma), and L-arabinose (Sigma) gave peaks at $t_{\rm R}$ (min) of 15.41, 14.56, 19.16, and 17.70, respectively.

Alkaline Hydrolysis of Compound 6. A methanol solution of compound 6 (0.2 mg/mL) was hydrolyzed by MeONa (20 mmol) for 12 h at room temperature. The reaction mixtures (compound 6a) were neutralized with formic acid (20 mmol) and then subjected to UPLC–HRESIMS analysis under the following conditions: Acquity UPLC BEH C₁₈ column (1.7 μ m, 2.1 × 100 mm); gradient elution with 0.1% formic acid in MeCN (solvent A) and 0.1% formic acid in water (solvent B) from 10 to 40% solvent A over 6 min at a flow rate of 0.35 mL/min; and negative HRESIMS (nebulizer, 2.0 bar; dry heater, 180 °C; dry gas, 8.0 L/min; capillary, 4000 V; end plate offset, -500 V; and collision cell RF, 550.0 Vpp). The desacyl saponin (compound 6a; t_R , 3.005 min; HRESIMS, 845.4891) was identified by comparing its retention time and HRMS to those of authentic sample ginsenoside Rg₁ (t_R , 3.005 min; HRESIMS, [M + HCOO]⁻ m/z 845.4897; C₄₃H₇₃O₁₆, calcd 845.4904).

RESULTS AND DISCUSSION

The *n*-BuOH-soluble fraction of *P. ginseng* ethanolic extract was chromatographed repeatedly on silica gel and reversed-phase RP18 columns and finally purified by HPLC to yield 6 new PPT-type ginsenosides, ginsenosides Re₁-Re₆ (compounds 1-6) (**Figure 1**), and 10 known PPT-type ginsenosides (**Figure 1**).

The known PPT-type ginsenosides were identified as ginsenosides $Rg_1(13)$, $Rg_2(13)$, Re(13), and Rf(14), 20-glucoginsenoside Rf(15), notoginsenosides $R_1(13)$, $R_2(13)$, and N(16), yesanchinoside D(17), and koryoginsenoside $R_1(7)$ by comparison of their MS and NMR spectroscopic data to published data. Among them, notoginsenoside N and yesanchinoside D were isolated from *P. ginseng* for the first time.

Compound 1 was obtained as a white amorphous powder. The HRESIMS of compound 1 showed two negative quasi-molecular ion peaks at m/z 961.5349 [M - H]⁻ and 1007.5414 [M + HCOO]⁻, demonstrating the molecular formula of compound 1 to be $C_{48}H_{82}O_{19}$. The IR spectrum of compound 1 showed strong absorption bands at 3400 and 1076 cm⁻¹, suggestive of an alcohol moiety, together with an absorption band at 1642 cm⁻¹ because of a double bond. Acid hydrolysis of compound 1 with 1 N HCl only liberated glucose, whose absolute configuration was determined to be the D form by HPLC analysis of chiral derivatives (12). The ¹H and ¹³C NMR spectra (**Table 1** and **2**) of compound 1 showed three anomeric signals at $\delta_{\rm H}$ 5.00 (d, J = 8.0 Hz), 5.08 $(d, J = 8.0 \text{ Hz}), 5.86 (d, J = 3.6 \text{ Hz}), and \delta_{C} 106.0, 98.2, and 102.0$ and signals assignable to an aglycone part [8 methyl proton singlets at $\delta_{\rm H}$ 0.75–2.05, 1 olefinic proton signal at $\delta_{\rm H}$ 5.22 (t, J = 6.8 Hz, H-24), and 30 carbon resonances, including 8 methyl, 8 methylene, 8 methine, and 6 quaternary carbons]. The aglycone carbon signals of compound 1 were superimposable with those of ginsenosides Rg_1 and Re(13), which indicated that compound 1 is also a 20(S)-protopanaxatriol 6,20-bisdesmoside, containing three glucosyl moieties. The resonances of the sugar residues were assigned starting from the anomeric protons by means of 2D NMR experiments (¹H-¹H COSY, HSQC, HMBC, and NOESY), which led to the determination of sequences of the three glucosyl moieties and the location of their linkages to the aglycone. The key ¹H-¹H COSY, HMBC, and NOESY correlations of compound 1 are shown in Figures 2 and 3. The correlations in the HMBC spectrum between the anomeric proton at $\delta_{\rm H}$ 5.00 (d, J =8.0 Hz, H-1') and the carbon signal at $\delta_{\rm C}$ 80.2 (C-6) and between H-1" at $\delta_{\rm H}$ 5.08 (d, J = 8.0 Hz) and C-20 at $\delta_{\rm C}$ 83.6 indicated that two β -glucopyranosyl units are attached at C-6 and C-20 positions of the aglycone, respectively. The significant downfield shift of C-3" (δ 88.5) in the inner β -glucopyranosyl moiety at C-20 of aglycone in the ¹³C NMR spectrum together with the HMBC correlation from H-1^{'''} ($\delta_{\rm H}$ 5.86, d, J = 3.6 Hz) to C-3^{''} ($\delta_{\rm C}$ 88.5) showed that the terminal α -glucopyranosyl is linked to the inner

position	<u> </u>	2	3	4	5	6
1a	1.58	1.69	1.71	1.71	1.65	1.71
1b	0.92	0.96	0.98	0.97	0.96	0.96
2a	1.89	1.89	1.92	1.92	1.86	1.92
2b	1.78	1.81	1.84	1.81	1.80	1.84
3	3.49 dd (11.2, 4.4)	3.45 dd (10.8, 4.4)	3.50 dd (11.2, 4.4)	3.49 dd (11.2, 4.4)	3.47 brd (10.8)	3.50 dd (10.8, 4.4)
5	1.37 d (10.4)	1.36 d (10.4)	1.39 d (10.4)	1.39 d (10.4)	1.37 d (10.8)	1.40 d (10.4)
6	4.38t(11.6)	4.34	4.39	4.40 t (10.4)	4.28	4.41
7a	2.46	2.41	2.47	2.46	2.41	2.47
7b	1.89	1.87	1.91	1.91	1.93t(11.6)	1.92
9	1.48	1.48	1.50	1.51	1.50	1.50
11a	2.00	2.05	2.05	2.06	2.08	2.03
11b	1.44	1.47	1.48	1.50	1.49	1.48
12	3.99	4.11	4.11	4.13	3.85	4.17
13	1.92	1.96	1.95 t (10.8)	1.97 t (10.8)	2.01	1.97 t (10.4)
15a	1.59	1.60	1.62	1.63	1.61	1.62
15b	1.03 t (10.8)	1.01	1.04	1.03	1.11	1.06
16a	1.75	1.72	1.73	1.73	1.76	1.79
16b	1.26	1.27	1.26	1.25	1.24	1.27
17	2.39	2.46	2.45	2.46	2.26	2.51
18	1.11s	1.13 s	1.13s	1.15s	1.15 s	1.14 s
19	0.97 s	0.99 s	1.01 s	1.01 s	0.95 s	1.01s
21	1.52 s	1.58 s	1.55 s	1.59 s	1.34 s	1.56 s
22a	2.32t(13.2)	2.37	2.34	2.35	2.06	2.37t(12.4)
22h	1.80	1 79	177	1.80	1.67	1 77
239	2 41	2 47	2 44	2.56	2.68	2.56
200 23h	2.10	2.47	2.10	2.30	2.00	2.30
200	5.00 t (6.8)	$5.24 \pm (6.8)$	2.13 5.21 t (10.8)	5.31 t (6.8)	$5.47 \pm (7.2)$	5.20t(6.0)
24	1.60 c	1.50 c	1.50 c	1.61 c	1.90 c	1.61 c
20	1.60 s	1.50 5	1.533	1.65 c	1.55 d (12 0)	1.013
27a 07h	1.00 5	1.555	1.07 5	1.03.5	4.000 (12.0)	1.00 5
2/0	2.05 c	1.06 c	2.05 c	2.05 c	4.40 2.08 c	2.06 c
20	2.003	1.303	2.003	2.00 S	2.003	2.003
29	0.75 0	0.77 c	0.79 c	0.70 c	0.70 c	0.91 0
30	0.75 5	0.775	0.765	0.795	0.795	0.015
	6-GIC	6-GIC	6-GIC	6-GIC	6-GIC	6-GIC
1′	5.00 d (8.0)	4.92 d (8.0)	5.00 d (8.0)	5.01 d (8.0)	4.92 d (7.2)	5.02 d (8.0)
2′	4.08 t (8.0)	4.02	4.07 t (8.0)	4.08	4.46	4.09 t (8.0)
3′	4.23	4.21	4.24	4.24	4.35	4.23 t (8.0)
4′	4.20	4.27	4.21	4.21	4.12t(8.8)	4.21
5′	3.92	3.83	3.93 t (8.0)	3.93	3.83	3.94
6′a	4.51	4.41	4.49	4.51 d (10.4)	4.47	4.52 d (11.6)
6′b	4.34	4.26	4.35	4.34	4.29	4.36 dd (11.6, 5.2)
	20-Glc	3'-Glc	20-Glc	20-Glc	2'-Glc	20-Glc
1″	5.08 d (8.0)	5.89 d (4.0)	5.05 d (8.0)	5.10 d (7.6)	5.92 d (7.2)	5.10 d (8.0)
2''	3.89	4.19	3.93 t (8.0)	3.94	4.19	3.97
3′′	4.18	4.59 t (9.2)	4.27	4.17	4.23t(8.8)	4.17 t (8.8)
4''	4.19	4.20	4.23	3.96	4.16	3.96
5''	3.80	4.76	3.72 dt (2.8.8.8)	3.98	3.94	3.99
6″a	4.37	4 46	4.38	4 66 d (10 0)	4 46	5.03d (11.6)
6″b	4.20	4.28	1.00	4.08	4.34	4.73 dd (11.6.6.4)
0 0	3 ^{//} -Glo	20-66	4''-Glo	6′′-Ara		6 ^{1/-} Acul
4///						0 -ACyi
1'''	5.86 d (3.6)	5.160(8.0)	5.84 d (3.6)	5.65 S		
2'''	4.17	3.97 (8.0)	4.14	4.86		5.96 at (15.6, 2.0)
3'''	4.57 t (8.8)	4.21	4.58 t (9.2)	4./9t(4.8)		7.03 dq (15.6, 6.8)
4'''	4.16	4.1/	4.13	4./3		1.650(6.8)
5''' C/// -	4.//	3.90	4.54	4.30		
6′′′a	4.49	4.47	4.53	4.19		
6′′′b	4.26	4.31	4.31			

^a Data were assigned on the basis of heteronuclear single-quantum coherence (HSQC), heteronuclear multiple-bond correlation (HMBC), H–H correlation spectroscopy (COSY), and nuclear Overhauser effect spectrometry (NOESY) experiments. The chemical shifts are in parts per million (ppm), and coupling constants [*J* in hertz (Hz)] are in parentheses. Overlapped signals are reported without designated multiplicities.

 β -glucopyranosyl at C-20 by a specific 1 \rightarrow 3 linkage (*18*). These linkages were further confirmed by NOESY correlations between H-1' and H-6 and between H-1''' and H-3''. On the basis of the

above results, the structure of compound **1** was determined as 6-*O*- β -D-glucopyranosyl-20-*O*-[α -D-glucopyranosyl-(1 \rightarrow 3)- β -D-glucopyranosyl]-20(*S*)-protopanaxatriol and named ginsenoside Re₁.

Article

Table 2. ^{13}C NMR (100 MHz, $\text{C}_5\text{D}_5\text{N})$ Chemical-Shift Assignments for Compounds $1\!-\!6$

osition	1	2	3	4	5	6
1	39.4	39.5	39.5	39.4	39.4	39.4
2	27.9	27.9	28.0	28.0	27.8	28.0
3	/8./	/8./	/8./	/8./	/8./	/8./
4	40.4	40.3	40.4	40.4	40.2	40.4
5	61.4	61.4	61.4	61.4	61.4	61.4
6	80.2	80.4	80.2	80.1	/9./	80.2
/	45.1	45.1	45.2	45.1	45.1	45.1
8	41.1	41.2	41.2	41.1	41.2	41.1
9	49.9	50.0	50.1	50.0	50.2	50.0
10	39.7	39.7	39.7	39.7	39.7	39.7
11	30.9	31.0	31.0	30.9	32.1	31.0
12	/0.3	70.3	70.2	70.3	/ 1.1	/0.1
13	49.1	49.2	49.2	49.2	48.3	49.2
14	51.4	51.4	51.4	51.4	51.7	51.4
15	30.7	30.7	30.7	30.6	31.2	30.7
10	20.7	20.7	20.0	20.0	27.0	20.7
1/	51.9	51.0	51.5	51.0	54.7	51.0
10	17.5	17.0	17.0	17.0	17.7	17.0
19	17.0	17.0	17.0	17.0	17.5	17.6
20	83.0	83.4	83.5	83.4	/3.0	83.5
21	22.4	22.4	22.2	22.3	26.8	21.9
22	30.1	36.2	30.1	36.2	36.2	36.1
23	23.3	23.3	23.2	23.2	100.0	23.0
24	125.9	120.0	125.9	120.1	126.0	120.1
25	131.0	131.0	131.0	131.1	136.2	131.0
26	25.8	25.8	25.8	25.8	21.9	25.8
27	17.8	17.8	17.8	17.9	60.9 20.1	01.0
20	31.0	31.0	31.0	31.0	32.1	31.0
29	10.4	10.4	10.4	10.4	10.0	10.4
30	17.1	17.2	17.2	17.2	10.0	17.2
	6-Glc	6-Glc	6-Glc	6-Glc	6-Glc	6-Glc
1′	106.0	105.8	106.0	106.0	103.9	106.0
2′	75.5	73.8	75.5	75.5	79.9	75.5
3′	79.7	89.3	79.7	79.7	80.0	79.7
4′	71.9	71.0	71.9	71.9	71.8	71.9
5′	78.2	77.6	78.2	78.2	78.1	78.2
6′	63.1	62.4	63.1	63.1	63.0	63.1
	20-Glc	3'-Glc	20-Glc	20-Glc	2'-Glc	20-Glc
1″	98.2	102.2	98.1	98.1	103.9	98.0
2''	73.5	74.3	74.6	75.1	76.1	75.0
3′′	88.5	75.6	78.7	79.3	78.5	79.3
4′′	70.7	72.0	81.2	72.2	72.4	71.6
5''	77.7	74.8	76.6	76.6	77.9	75.0
6′′	62.3	62.6	62.1	68.6	63.4	64.6
	3''-Glc	20-Glc	4''-Glc	6''-Ara		6''-Acy
1′′′	102.0	98.3	103.0	110.2		166.4
2′′′	74.3	75.2	74.5	83.4		123.2
3′′′	75.7	79.4	75.5	78.9		144.8
4′′′	72.0	71.7	71.9	86.0		17.8
5'''	74.7	78.3	75.3	62.7		
6'''	62.5	62.9	62.7			

Compound **2** showed the same molecular formula $C_{48}H_{82}O_{19}$ as compound **1** determined by HRESIMS (m/z 961.5346 [M – H]⁻, calcd 961.5378; m/z 1007.5390 [M + HCOO]⁻, calcd 1007.5432). Acid hydrolysis of compound **2** also gave D-glucose. The ¹H and ¹³C NMR data (**Tables 1** and **2**) are very similar to those of compound **1**, including signals assignable to the aglycone [20(*S*)-protopanaxatriol] part and three sugar moieties (a terminal α -D-glucopyranosyl unit and two β -D-glucopyranosyl units). The terminal α -glucopyranosyl was confirmed to be attached to the inner glucose by a 1 \rightarrow 3 linkage, as evidenced by the

Figure 1. Structures of new and known PPT-type ginsenosides from the root of *P. ginseng.*

Figure 2. Selected ¹H⁻¹H COSY and HMBC correlations of compound **1**.

correlation from H-1" ($\delta_{\rm H}$ 5.89, d, J = 4.0 Hz) to C-3' ($\delta_{\rm C}$ 89.3) in the HMBC spectrum of compound **2**. However, the HMBC correlation from H-1' ($\delta_{\rm H}$ 4.92, d, J = 8.0 Hz) to C-6 ($\delta_{\rm C}$ 80.4) suggested that the disaccharide moiety is connected to aglycone at C-6. Another β -D-glucopyranosyl unit should be linked to C-20, which was confirmed by the HMBC correlation between H-1"" ($\delta_{\rm H}$ 5.16) and C-20 ($\delta_{\rm C}$ 83.5). Therefore, the structure of compound **2** was elucidated as 6-*O*-[α -D-glucopyranosyl-(1 \rightarrow 3)- β -Dglucopyranosyl]-20-O- β -D-glucopyranosyl-20(*S*)-protopanaxatriol and named ginsenoside Re₂. Compound **2** was also identified in the root of *P. ginseng* by LC-MS analysis (data not shown), and therefore, it is by definition a new natural product, despite the

Figure 3. Selected NOESY correlations of compound 1.

fact that it has been biosynthesized from ginsenoside Rg₁ by cyclomaltodextrin glucanotransferase (*19*). In addition, we reassigned those ambiguous assignments of ¹³C NMR data in a previous report (*19*) and presented a complete assignment of ¹H and ¹³C NMR data of compound **2** based on analyses of 2D NMR spectra, including COSY, HSQC, HMBC, and NOESY.

Compound 3 is a white powder with a molecular formula of $C_{48}H_{82}O_{19}$, which is the same as that of compound 1, compound 2, and notoginsenoside N (16), on the basis of negative-ion HRESIMS data $(m/z \ 961.5340 \ [M - H]^{-}$, calcd 961.5378). The ¹H and ¹³C NMR data (**Tables 1** and **2**) of compound **3** are very similar to those of notoginsenoside N (16), except for a little difference on anomeric signals, which suggested that the linkage of the sugar part in compound 3 is different from that in notoginsenoside N. In the HMBC spectrum of compound 3, the anomeric proton of the α -glucopyranosyl group at $\delta_{\rm H}$ 5.84 (d, J = 3.6 Hz, H-1^{'''}) showed a long-range correlation with C-4^{''} of the inner β -glucopyranosyl unit at $\delta_{\rm C}$ 81.2, of which H-1" $(\delta_{\rm H} 5.05, d, J = 8.0 \text{ Hz})$ in turn correlated to C-20 $(\delta_{\rm C} 83.5)$ of the aglycone. The HMBC correlation from H-1' ($\delta_{\rm H}$ 5.00, d, J = 8.0 Hz) to C-6 ($\delta_{\rm C}$ 80.2) was also observed. Furthermore, the shifts of signals assignable to C-6-linked β -glucopyranosyl were identical to those in compound 1 rather than compound 2. D-Glucose was the only monosaccharide identified in the acid hydrolysate of compound 3. The above data suggested that β -glucopyranosyl was connected to aglycone at C-6 and the disaccharide chain was linked to the C-20 position in compound 3. Thus, compound 3 was determined to be 6-O- β -D-glucopyranosyl-20-O-[α -Dglucopyranosyl- $(1 \rightarrow 4)$ - β -D-glucopyranosyl]-20(S)-protopanaxatriol and named ginsenoside Re₃.

Compound 4 has a molecular formula of $C_{47}H_{80}O_{18}$, as deduced from the HRESIMS data (m/z 931.5260 [M – H]⁻, calcd 931.5272; m/z 977.5292 [M + HCOO]⁻, calcd 977.5327). Acid hydrolysis of compound 4 yielded D-glucose and L-arabinose. The ¹H and ¹³C NMR data of compound 4 (Tables 1 and 2) demonstrated that the aglycone signals were in good agreement with those of 20(S)-protopanaxatriol characterized in compounds 1–3. Three sets of signals because of two β -glucopyranosyl units and an α -arabinofuranosyl unit were also observed. The observation of glycosylation-induced downfield shifts in the ¹³C NMR spectrum at $\delta_{\rm C}$ 80.1 (C-6) and 83.4 (C-20), along with long-range correlations of H-1'/C-6, H-1'''/C-6'', and H-1''/C-20 observed in the HMBC spectrum, suggested that a β -glucopyranosyl unit was connected at C-6 and an α -arabinofuranosyl-(1 \rightarrow 6)- β glucopyranosyl unit was linked to C-20 of protopanaxatriol. Hence, the structure of compound 4 was elucidated as 6-*O*- β -D-glucopyranosyl-20-*O*-[α -L-arabinofuranosyl-(1 \rightarrow 6)- β -D-glucopyranosyl]-20(*S*)-protopanaxatriol and named ginsenoside Re₄.

Compound 5 showed spectral features closely related to those of ginsenoside Rf(14). However, the molecular formula of compound 5 analyzed for $C_{42}H_{72}O_{15}$ by HRESIMS (m/z 815.4785 $[M - H]^{-}$, calcd 815.4798; m/z 861.4826 $[M + HCOO]^{-}$, calcd 861.4853) has an additional oxygen atom compared to that of ginsenoside Rf (14). In comparison of ¹H and ¹³C NMR data (Tables 1 and 2) of compound 5 to those of ginsenoside Rf(14), a change in shift because of an oxygenated methylene was observed at $\delta_{\rm H}$ 4.55 (d, J = 12.0 Hz, H-27a), 4.46 (H-27b), and $\delta_{\rm C}$ 60.9 (C-27) and the olefinic carbon signal of C-24 ($\delta_{\rm C}$ 128.0) and the methyl carbon at C-26 ($\delta_{\rm C}$ 21.9) were significantly downfieldshifted, which indicated that an additional hydroxyl group was located at C-27 in compound 5, which can be confirmed by the HMBC correlations from H-27a and H-27b to C-24 and C-26, respectively. Furthermore, the signals ascribed to aglycone of compound 5 were found to be identical to those of 27-hydroxyl-20(S)-protopanaxatriol (20), except for the downfield shift of carbon at C-6 because of glycosidation. D-Glucose was identified in the acid hydrolysate of compound 5. Accordingly, the structure of compound 5 was determined as $6-O-\beta$ -D-glucopyranosyl- $(1\rightarrow 2)$ - β -D-glucopyranosyl-27-hydroxyl-20(S)-protopanaxatriol and named ginsenoside Re₅.

Compound **6** was isolated as a white amorphous powder with a molecular formula of $C_{46}H_{76}O_{15}$ based on its HRESIMS at m/z913.5190 [M + HCOO]⁻ (calcd 913.5166). The IR spectrum of compound **6** showed an absorption band at 1710 and 1654 cm⁻¹ because of the ester and olefin group. The UV spectrum showed a significant absorption maximum at 253 nm and the usual 210 nm absorption of triterpene compounds. The ¹H and ¹³C NMR data (**Tables 1** and **2**) of compound **6** revealed it to be a 20(*S*)protopanaxatriol 6,20-bisdesmoside (*13*) with two β -D-glucopyranosyl units and a butenoyl group (7), suggestive by the signals at

Article

 $\delta_{\rm H}$ 1.65 (d, J = 6.8 Hz), 7.03 (dq, J = 15.6, 6.8 Hz), and 7.03 (dd, J = 15.6, 2.0 Hz) and $\delta_{\rm C} 17.8, 144.8, 123.2, \text{ and } 166.4$. A detailed comparison of NMR data of compound 6 to those of koryoginsenoside R_1 (7) and ginsenoside R_{g_1} (13) clearly indicated that compound **6** is a butenoyl ester of ginsenoside Rg_1 and differed from koryoginsenoside R_1 only in the location of the butenoyl ester group. The functional group was assigned at C-6" of glucose linked at C-20 of aglycone based on HMBC correlations between protons at $\delta_{\rm H}$ 5.03 (d, J = 11.6 Hz, H-6"a) and 4.87 (dd, J = 6.4, 11.6 Hz, H-6"b) and the carbon signal at $\delta_{\rm C}$ 166.4 (C-1"'), and the carbon signal of C-6" was downfield-shifted ($\delta_{\rm C}$ 63.0 \rightarrow 64.6) by comparing it to that of ginsenoside Rg_1 (13). Alkaline hydrolysis of compound 6 with NaOMe liberated ginsenoside Rg₁, which further confirmed that compound **6** is a ginsenoside Rg₁ butenoyl ester. On the basis of the above evidence, compound 6 was elucidated as 6-O-\beta-D-glucopyranosyl-20-O-(β-D-6-O-E-2-butenoyl-glucopyranosyl)-20(S)-protopanaxatriol and named ginsenoside Re₆.

PPT-type ginsenosides, such as Rg₁ and Re, have previously shown extensive bioactivities, including anti-diabetes (21), neuroprotective effects (22), estrogen and glucocorticoid receptor activation (23, 24), and cardiovascular protective effects (25). Along with those known PPT-type ginsenosides, 6 new PPT-type ginsenosides (compounds 1–6) were isolated from the root of *P. ginseng*. Compounds 1 and 2 are the first example of ginsenosides containing α -D-glucopyranosyl-(1 \rightarrow 3)- β -D-glucopyranosyl moiety isolated from the genus *Panax*. These new PPT-type ginsenosides further illustrate the interesting chemodiversity of *P. ginseng*.

ACKNOWLEDGMENT

We are grateful to the State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Shenzhen, China) and the Hong Kong Polytechnic University for the use of their NMR facilities.

Supporting Information Available: NMR (1D and 2D) spectra of compounds **1–6** (Figures S1–S37). This material is available free of charge via the Internet at http://pubs.acs.org.

LITERATURE CITED

- (1) Yue, P. Y.; Mak, N. K.; Cheng, Y. K.; Leung, K. W.; Ng, T. B.; Fan, D. T.; Yeung, H. W.; Wong, R. N. Pharmacogenomics and the Yin/Yang actions of ginseng: Anti-tumor, angiomodulating and steroid-like activities of ginsenosides. *Chin. Med.* 2007, 2, 6.
- (2) Hofseth, L. J.; Wargovich, M. J. Inflammation, cancer, and targets of ginseng. J. Nutr. 2007, 137, 183S–185S.
- (3) Chen, C. F.; Chiou, W. F.; Zhang, J. T. Comparison of the pharmacological effects of *Panax ginseng* and *Panax quinquefolium*. *Acta. Pharmacol. Sin.* 2008, 29 (9), 1103–1108.
- (4) Christensen, L. P. Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv. Food Nutr. Res. 2009, 55, 1-99.
- (5) Besso, H.; Kasai, R.; Saruwatari, Y.; Fuwa, T.; Tanaka, O. Ginsenoside-Ra₁ and ginsenoside-Ra₂, new dammarane saponins of ginseng roots. *Chem. Pharm. Bull.* **1982**, *30* (7), 2380–2385.
- (6) Kasai, R.; Besso, H.; Tanaka, O.; Saruwatari, Y.; Fuwa, T. Saponins of red ginseng. *Chem. Pharm. Bull.* **1983**, *31* (6), 2120–2125.
- (7) Kim, D.-S.; Chang, Y.-J.; Zedk, U.; Zhao, P.; Liu, Y.-Q.; Yang, C.-R. Dammarane saponins from *Panax ginseng*. *Phytochemistry* **1995**, 40 (5), 1493–1497.
- (8) Park, J. D.; Rhee, D. K.; Lee, Y. H. Biological activities and chemistry of saponins from *Panax ginseng* C. A. Meyer. *Phytochem. Rev.* 2005, 4 (2–3), 159–175.
- (9) Wang, J. R.; Leung, C. Y.; Ho, H. M.; Chai, S.; Yau, L. F.; Zhao, Z. Z.; Jiang, Z. H. Quantitative comparison of ginsenosides and

polyacetylenes in wild and cultivated American ginseng. *Chem. Biodiversity* **2010**, *7* (4), 975–983.

- (10) Wang, J. R.; Yamasaki, Y.; Tanaka, T.; Kouno, I.; Jiang, Z. H. Dammarane-type triterpene saponins from the flowers of *Panax* notoginseng. Molecules 2009, 14 (6), 2087–2094.
- (11) Wong, V. K.; Cheung, S. S.; Li, T.; Jiang, Z. H.; Wang, J. R.; Dong, H.; Yi, X. Q.; Zhou, H.; Liu, L. Asian ginseng extract inhibits in vitro and in vivo growth of mouse Lewis lung carcinoma via modulation of ERK-p53 and NF-κB signaling. J. Cell Biochem. 2010, 111 (4), 899–910.
- (12) Tanaka, T.; Nakashima, T.; Ueda, T.; Tomii, K.; Kouno, I. Facile discrimination of aldose enantiomers by reversed-phase HPLC. *Chem. Pharm. Bull.* 2007, 55, 899–901.
- (13) Teng, R.; Li, H.; Chen, J.; Wang, D.; He, Y.; Yang, C. Complete assignments of ¹H and ¹³C NMR data for nine protopanaxatriol glycosides. *Magn. Reson. Chem.* **2002**, *40* (7), 483–488.
- (14) Zhou, J.; Wu, M. Z.; Taniyasu, S.; Besso, H.; Tanaka, O.; Saruwatari, Y.; Fuwa, T. Dammarane saponins of Sanchi ginseng, roots of *Panax notoginseng* (Burk.) F. H. Chen (Araliaceae): Structures of new saponins, notoginsenosides-R₁ and -R₂, and identification of ginsenosides-Rg₂ and -Rh₁. *Chem. Pharm. Bull.* **1981**, *29* (10), 2844–2850.
- (15) Sanada, S.; Shoji, J. Studies on the saponins of ginseng. III. Structures of ginsenoside Rb₃ and 20-glucoginsenoside Rf. *Chem. Pharm. Bull.* **1978**, *26* (6), 1694–1697.
- (16) Yoshikawa, M.; Morikawa, T.; Yashiro, K.; Murakami, T.; Matsuda, H. Bioactive saponins and glycosides. XIX. Notoginseng (3): Immunological adjuvant activity of notoginsenosides and related saponins: Structures of notoginsenosides-L, -M, and -N from the roots of *Panax* notoginseng (Burk.) F. H. Chen. Chem. Pharm. Bull. 2001, 49 (11), 1452–1456.
- (17) Zou, K.; Zhu, S.; Tohda, C.; Cai, S.; Komatsu, K. Dammarane-type triterpene saponins from *Panax japonicus*. J. Nat. Prod. 2002, 65 (3), 346–351.
- (18) Koike, K.; Jia, Z.; Nikaido, T. New triterpenoid saponins and sapogenins from *Saponaria officinalis*. J. Nat. Prod. **1999**, 62 (12), 1655–1659.
- (19) Danieli, B.; Falcone, L.; Monti, D.; Riva, S.; Gebhardt, S.; Schubert-Zsilavecz, M. Regioselective enzymatic glycosylation of natural polyhydroxylated compounds: Galactosylation and glucosylation of protopanaxatriol ginsenosides. J. Org. Chem. 2001, 66 (1), 262–269.
- (20) Tian, Y.; Guo, H.; Han, J.; Guo, D. Microbial transformation of 20(S)-protopanaxatriol by *Mucor spinosus. J. Nat. Prod.* 2005, 68 (5), 678–680.
- (21) Huang, Y. C.; Lin, C. Y.; Huang, S. F.; Lin, H. C.; Chang, W. L.; Chang, T. C. Effect and mechanism of ginsenosides CK and Rg₁ on stimulation of glucose uptake in 3T3-L1 adipocytes. *J. Agric. Food Chem.* 2010, 58 (10), 6039–6047.
- (22) Xu, L.; Chen, W. F.; Wong, M. S. Ginsenoside Rg₁ protects dopaminergic neurons in a rat model of Parkinson's disease through the IGF-I receptor signalling pathway. *Br. J. Pharmacol.* 2009, *158* (3), 738–748.
- (23) Lau, W. S.; Chan, R. Y.; Guo, D. A.; Wong, M. S. Ginsenoside Rg₁ exerts estrogen-like activities via ligand-independent activation of ERα pathway. J. Steroid Biochem. Mol. Biol. 2008, 108 (1-2), 64-71.
- (24) Leung, K. W.; Leung, F. P.; Huang, Y.; Mak, N. K.; Wong, R. N. Non-genomic effects of ginsenoside-Re in endothelial cells via glucocorticoid receptor. *FEBS Lett.* **2007**, *581* (13), 2423–2428.
- (25) Zhu, D.; Wu, L.; Li, C. R.; Wang, X. W.; Ma, Y. J.; Zhong, Z. Y.; Zhao, H. B.; Cui, J.; Xun, S. F.; Huang, X. L.; Zhou, Z.; Wang, S. Q. Ginsenoside Rg₁ protects rat cardiomyocyte from hypoxia/ reoxygenation oxidative injury via antioxidant and intracellular calcium homeostasis. *J. Cell. Biochem.* **2009**, *108* (1), 117–124.

Received for review September 30, 2010. Revised manuscript received November 16, 2010. Accepted November 16, 2010. The project was supported by a Faculty Research Grant of the Hong Kong Baptist University.